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Abstract: A comparison is presented of two sets of symmetry conservation rules that govern the course of various 
chemical reactions. The Wigner-Witmer rules are shown to operate on the basis of total electronic orbital sym­
metry conservation, whereas the Woodward-Hoffmann rules utilize individual electronic orbital symmetry con­
servation for their operation. A three-level hierarchy of symmetry control is generated by these sets of rules: 
namely, "allowed" reactions conserve both total and individual orbital symmetry, "forbidden" reactions conserve 
total but not individual orbital symmetry, and "unfeasible" reactions conserve neither of these symmetries. The 
parallel application of both sets of rules to several particular reactions is presented. 

The elucidation of numerous chemical reaction phe­
nomena is greatly facilitated by the use of symmetry 

conservation rules that correlate the electronic states of 
reactant species with appropriate electronic states of 
possible product species. One of these sets of symmetry 
rules, proposed by Wigner and Witmer2 in 1928, has 
been the subject of numerous discussions, applications, 
and extensions.3-10 Another set of symmetry rules, 
proposed by Woodward and Hoffmann11-14 in 1965, 
has also attracted considerable attention.9'10al5~36 
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The two sets of symmetry rules share a fundamental 
basis, although they differ in certain essential respects 
that allow them to form a hierarchical structure. Un­
fortunately, the traditional manner of deriving, treat­
ing, and applying the two sets of rules tends to over­
emphasize their differences. For instance, the Wigner-
Witmer rules are customarily conceived in terms of (1) 
conservation of angular momentum and (2) selection 
rules specifying accessible product states of a reaction. 
The Woodward-Hoffmann rules, on the other hand, are 
customarily conceived in terms of (1) conservation of 
symmetry and (2) energy considerations determining 
the course of a reaction. However, (1) the symmetry 
designation of a wavefunction signifies that the wave-
function is an eigenfunction of a particular symmetry 
operation, but such an invariance of a symmetry opera­
tion implies the existence of a constant of motion and a 
conservation law. For instance, rotational symmetry 
invariance implies conservation of angular momentum. 
Furthermore, (2) a selection rule represents a statement 
that a particular reaction path is most feasible. From 
an energy point of view, that means that the inter-
nuclear potential along that selected path has the 
least high energy barrier between reactant and product. 
Alternatively, energy considerations themself allow a 
selection to be made of a most feasible final state; 
hence, energy considerations lead to selection rules. 
Thus, both Wigner-Witmer and Woodward-Hoffmann 
rules should be regarded in the same terms: namely, 
(1) conservation of angular momentum ergo conserva­
tion of symmetry; and (2) selection rules ergo energy 
considerations. Although straightforward, the similar­
ity and interdependence of these concepts have not 
been generally recognized. 

A number of prerequisites must be satisfied10=1 in 
order to apply the symmetry rules to a reaction system. 
Common to the two sets of symmetry rules214 is the 
assertion that the Born-Oppenheimer37 approximation 
be valid so that nuclear and electronic motions can be 
separated. For the isolated reaction system, the total 
angular momentum is necessarily conserved.38 How­
ever, it is further assumed that three separate compo­
nents of angular momentum are separately conserved 
during the reaction process:2-7 namely, the nuclear 
angular momentum, the electronic spin angular momen­
tum, and the electronic orbital angular momentum. 
In addition, all electronic spin interactions and nuclear 
dynamic effects103'39 are assumed negligible. Under 
these conditions, the treatment of the conservation of 
electronic orbital angular momentum generates two 
fundamentally similar, but separate, sets of symmetry 
rules. The Wigner-Witmer rules assume conservation 
of total electronic orbital angular momentum, whereas 
the Woodward-Hoffmann rules assume conservation 
of individual electronic orbital angular momenta. In 
both cases, the electronic energy plays the role of an 
effective internuclear potential function governing the 
motions of the nuclei. Thus, the feasibility of a given 
reaction mechanism can be assessed by determining the 
electronic energy along the reaction coordinate as the 
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system undergoes the transformation from reactants to 
products. This reaction path energy profile is of course 
influenced by the effects of angular momentum conserva­
tion considerations. 

When the positions of the nuclei are such that they 
conform to a symmetry point group,40 then the orbital 
angular momentum functions, both total and individual, 
form a basis for the irreducible representations of the 
point group and the total and individual orbital sym­
metry designations become the instruments for the 
determination of energy characteristics along the re­
action path as embodied in the symmetry rules. In the 
present work, the distinction between conservation of 
total2 vs. individual1* electronic orbital symmetry is used 
to classify the symmetry rules into a hierarchy of sym­
metry control over the course of chemical reactions. 

The present work is concerned with the total elec­
tronic energy {i.e., the internuclear potential energy in 
the Born-Oppenheimer approximation) along an entire 
trajectory from reactant, through transition state, and 
into product conformation, that is, an entire reaction 
path on the potential energy surface. Thus, reactant-
type and product-type wave functions are developed 
and both combined into a configuration interaction 
series that is valid throughout the course of the reaction 
regime. This allows bona fide variational energy ex­
pressions to be derived that correspond to the energy 
along the entire reaction path. In addition, this 
scheme provides a qualitative means for assessing re­
action feasibilities concurrently from both the Wigner-
Witmer and Woodward-Hoffmann points of view. In 
contrast, the customary approach is to consider the 
molecular orbital arrangement specifically at the re­
actant and product positions only. Another approach 
is that of Hudson1'6 who uses a perturbation treatment 
to deal with a small region on the potential energy 
surface that is only very close to the reactant (or 
product) state. A further and very different approach 
has been reported by George and Ross10a who treat the 
problem from the vantage point of collison theory to 
assess the consequences of symmetry conservation on 
the transition matrix. 

In the following, a general wave function description 
is developed for reacting systems that allows for both 
the Wigner-Witmer and Woodward-Hoffmann treat­
ments to be applied. The corresponding symmetry 
conservation rules are described and their effects on the 
electronic energy of the system are assessed. These 
energy considerations lead to a justification for the 
operation of the symmetry rules, since the feasibility of 
a reaction is related to the height of the energy barrier 
encountered by the system along the given reaction 
path. Finally, several examples of the qualitative appli­
cation of these rules to the same chemical systems are 
presented to illustrate the relationship between the two 
approaches. 

I. Wigner-Witmer Rules 

Since all spin and nuclear effects are separated from 
the electronic orbital motions in the current regime, the 
wave function description of a reaction system need 
only be concerned with the electronic orbital or spatial 
characteristics. Of particular interest is the assignment 

(40) F. A. Cotton, "Chemical Applications of Group Theory," 
Interscience, New York, N. Y., 1963. 
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of orbital symmetry labels derived from the molecular 
point group corresponding to the geometrical confor­
mation of the nuclear framework. 

Consider the following bimolecular chemical re­
action. 

AB + C D — > (ABCD)—> AC + BD (1) 

Following Shuler's extension6 of the Wigner-Witmer 
rules, the reactant wave function, xpn, is obtained by 
taking a properly antisymmetrized product of wave 
functions: one, I^AB, describing the AB molecule and 
constructed from molecular orbitals spanning the space 
of AB; and the other, ^CD, describing the CD molecule 
and built from CD molecular orbitals. Thus, one 
obtains 

^ R = G ^ A B ^ C D ] (2) 

where Q. is the appropriate antisymmetrization operator 
which makes \pn satisfy the Pauli principle41 for 
fermions. The total symmetry of each of the two iso­
lated constituents I^AB and I/^D must be resolved into a 
linear combination of symmetry species corresponding 
to the point group of the intermediate complex, ABCD 
of eq 1. This resolution is easily accomplished by means 
of available symmetry correlation tables.36,7 This 
procedure imposes certain geometrical restrictions on 
the system since particular symmetry elements in the 
original point group of one of the reactant molecules 
must be aligned so as to coalesce into certain symmetry 
elements in the point group of the complex and similarly 
for the point group symmetry elements of the other 
reactant. The symmetry of the total reactant function, 
^R, is then obtained by taking the direct product of the 
set of resolved symmetry species of AB with those of 
CD. This process produces a manifold of possible 
symmetry species corresponding to I/'R in the point 
group of the incipient intermediate complex arising from 
the reactants. 

The product wave function, I/'P, is built from wave 
functions that describe the AC and BD systems as 
follows. 

I/'P = GWACV'BD] (3) 

Here, as in the reactant case, the total symmetry of each 
of the two isolated constituents, \J/Ac and \f/BD, must be 
resolved into a linear combination of symmetry species 
of the point group of the intermediate complex. Taking 
the direct product of the AC with the BD symmetry 
species gives the manifold of species corresponding to 
\pp in the point group of the complex. 

In order for the reactants and products to correlate, 
the symmetry conservation rule states that the inter­
mediate complex, formed during the reaction, must 
have at least one symmetry species in its term manifold 
that arises both from the resolved reactant and resolved 
product manifolds. The entity of symmetry being 
conserved from reactant to product wave function is 
therefore a total electronic orbital symmetry or state 
symmetry, as opposed to an individual electronic or­
bital symmetry. That is, the combination of reactants 
must form at least one total electronic state symmetry 
that can also be produced from the combination of 
product molecules, and these state symmetries must be 
correlated by a resolution through the point group of an 
appropriate intermediate complex. 

(41) W. Pauli, Jr., Z. Phys., 31, 765 (1925). 

The total wave function \p corresponding to the given 
reaction system is formed from a linear combination of 
the reactant and product wave functions 

t = CRV'R + CPI/'P (4) 

where the Cs are appropriate linear coefficients. This 
represents a two-state variational wave function approxi­
mation, or in valence bond language, the total descrip­
tion \p arises from the two structures, reactant \pn and 
product i/'p. Initially, CR would have a magnitude close 
to unity and CP would have a magnitude close to zero. 
At the end of the reaction process, these values would 
be interchanged. Throughout the process, the struc­
tures ^R and ^ P would retain the localized descriptions 
indicated by the subscripts in eq 2 and 3, respectively. 
Symmetry conservation implies a matching of the set 
of possible state symmetries of i/-R with those of ^p. 
These concepts regarding \p are further developed in the 
sequel. 

H. Woodward-Hoffmann Rules 

Following the general procedures of the preceding 
section, the total electronic wave function description 
of a chemical reaction system to be used within the 
context of the Woodward-Hoffmann rules is again a 
two-state configuration interaction approximation.34'35 

Thus, the total wave function i/' for any reaction system 
has the same form as that given in eq 4 although the 
reactant and product structures, I//R and I/'P, are con­
structed in a different manner. 

Again, consider the reaction given in eq 1. Here, 
molecular orbitals are formed that span the entire 
AB + CD reactant system. A localization to a reactant 
description is indicated by writing the reactant wave 
function I^R in terms of the fully antisymmetrized wave 
function 1/^+00 as follows. 

4>R = I/'AB+CD (5) 

The product structure \pv is composed of molecular 
orbitals spanning the space of AC + BD. 

i/'p = ^AC+BD (6) 

As before, these structures retain localized reactant 
and product characteristics, respectively, throughout 
the reaction process. The geometrical conforma­
tion of the nuclear framework is constrained to con­
form to a certain symmetry point group that is present 
during the reactant, intermediate complex, and product 
stages. This allows each of the molecular orbitals to 
be labeled with a symbol corresponding to the irreduci­
ble symmetry species that it represents. 

In order for the reactants and products to correlate, 
the symmetry conservation rule states that the symmetries 
of each of the individual principal occupied molecular 
orbitals of the reactant structure must be the same as 
the symmetries of the individual principal occupied 
molecular orbitals of the product structure. For an 
jV-electron system, the entity of symmetry being con­
served from reactant to product wave function is 
therefore a set of N individual electronic molecular 
orbital symmetries. That is, the symmetry of each 
occupied molecular orbital in the reactant wave function 
must correlate with a similarly occupied orbital of the 
same symmetry in the product wave function. 

In addition to these individual electronic orbital 
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REACTANTS PRODUCTS 

REACTION COORDINATE 

Figure 1. The energy as a function of reaction coordinate for the 
hypothetical bimolecular process. Solid curves represent energy 
of wavefunctions describing "reactant" AB + CD (a) and "prod­
uct" AC + BD (7) structures. No interaction between curves a 
and 7 gives high energy barrier indicated by the arrow labeled 1 
on the left of the diagram; the exchange interaction between a 
and 7 gives the dotted curve and energy barrier 2; and full inter­
action between a and 7 gives the dashed curve corresponding to 
barrier 3. 

symmetry labels, each of the jV-electron structures, I/'R 
and \pv of eq 5 and 6, has total electronic orbital sym­
metry or state symmetry as well. This state symmetry 
can be obtained from the successive direct products of 
the N individual orbital symmetries corresponding to 
each occupancy of a molecular orbital. This total sym­
metry quantity finds its usefulness in relating the Wood­
ward-Hoffmann and Wigner-Witmer rules to one 
another. 

The use of a two-term expression for \p provides 
needed flexibility for the present purposes over the 
conventional use of a single-determinantal approach.14 

This is especially true in the region of the intermediate 
complex and particularly when energy considerations are 
tackled. The qualitative results are nevertheless 
equivalent for both the present regime and the canonical 
description of these symmetry rules.14 

III. Energy Considerations 

The motions of the nuclei, as they pass from a re­
actant conformation into a product conformation, 
constitute a chemical reaction path. The relative prob­
ability that the reaction might follow a given path de­
pends on the relative ease with which the nuclei can 
traject this path. Since the electronic energy is assumed 
to be playing the role of an effective internuclear 
potential, the feasibility of a given reaction depends 
upon the nature of the electronic energy profile along 
the reaction coordinate. In particular, a reaction path 
encountering a high electronic energy barrier is asso­
ciated with a low reaction probability, while a reaction 
path encountering a lower electronic energy barrier is 
associated with a higher reaction probability. Since the 
orbital symmetry characteristics of reactant and product 
wave functions can strongly influence the relative magni­
tude of these electronic energy baniers, these symmetry 
characteristics become useful indices for predicting the 
relative heights of these barriers and, hence, for predict­
ing the relative feasibilities of various reaction paths. 
Thus a justification for the operation of the symmetry 
rules can be developed on the basis of electronic energy 
and symmetry considerations. In this section, the 
symmetry properties of the wave functions, developed 
in the preceding sections, are used to assess the elec­
tronic energy along the entire course of a reaction from 
reactants to products, including the point where the 
maximum energy barrier occurs. In this way, the 
relationship between the Wigner-Witmer and Wood­

ward-Hoffmann rules is elucidated and their operation 
justified. 

An appropriate electronic wave function \p has been 
defined in eq 4 to describe the motions of the electrons 
during the course of a chemical reaction. The feasibility 
of the reaction process is determined by the nature of 
the energy expectation value E along the reaction co­
ordinate as follows 

£ = (^K\iW\^) (7) 

with the Hamiltonian 3C given by 

3c = T,zaZf,/Ral, + EC-1AVr - T.zj^r^nr1) 

(8) 

where a and /3 label nuclei, ; and j label electrons, and 
Za is the charge on nucleus a. From eq 7, a set of 
secular equations is derived, from which the linear 
coefficients CR and Cp of eq 4 are determined. The 
corresponding eigenvalues can be written as follows 

E = {1I-Ia + 7) - PS ± [V,(a - 7)2 + 
£2 - pS(a + 7) + ayS*]' =}(1 - S2)"1 (9) 

where the energy of the reactant structure is a 

a = <^R|3CI^H)/<^R|^R) ClO) 

the energy of the product structure is 7 

7 = {WM*v)KMr) CU) 
the interaction, resonance or exchange energy between 
the two structures is termed 0 

H = WRIKIMWRIIM&' I IM]- 1 ! (12) 

and since no orthogonality has been assumed to exist 
between the two structures, the overlap integral S is 
defined by 

S = <^R;^P)[<^R|^R><^P |^P)] - ' ! (13) 

The quantities a, 7, /3, and S of eq 10-13, respectively, 
are each strong functions of the internuclear coordinates 
and hence each of these quantities varies along the 
entire reaction path. This is illustrated in Figure 1, 
where the energy of a reactant structure, a, is shown to 
vary along the reaction coordinate from a low to a high 
value, whereas the energy of a product structure, 7, is 
shown to vary from a high to a low value as the reaction 
proceeds. 

The basis for the operation of symmetry rules is the 
strong influence exerted on the energy of the system, E 
in eq 9, by the symmetry properties of the structures 
I/'R and \j/P through their effects on the exchange and 
overlap integrals, /3 and 5 of eq 12 and 13. Since the 
Hamiltonian transforms as the totally symmetric species 
of the point group of the system, the direct product of 
the symmetry species, T, of I^R and \pp 

I W R F W P ] (14) 

must have a totally symmetric component in order for 
either /3 or 5 to be nonzero. This is simply a conse­
quence of the Wigner-Eckart theorem.42'43 In terms of 
the Wigner-Witmer rules, if total symmetry is conserved 

(42) A. R. Edmonds, "Angular Momentum in Quantum Mechanics," 
2nd ed, Princeton University Press, Princeton, N. J., 1960, pp 73-75. 

(43) P. Roman, "Advanced Quantum Theory," Addison-Weslcy, 
Reading, Mass., 1965, pp 576-590. 
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{vide supra), then /3 and S can be nonzero; otherwise, 
these quantities vanish. This is illustrated in Figure 1 
for the hypothetical reaction of eq 1. If total symmetry 
is not conserved, the two structures ^ R and ^ P do not 
correlate with one another and the energy expression in 
eq 9 reduces to E = a, shown by the solid line in Figure 1. 
In other words, without total symmetry conservation, 
the energy states a and y cross without interacting with 
one another in the vicinity of the intermediate complex. 
However, if total symmetry is conserved, the two struc­
tures do correlate with one another and the energy, 
corresponding to eq 9, lies in the shaded region of 
Figure 1 along the course of the reaction. In this case, 
the two energy states a and y do interact and give rise 
to configurational mixing in the intermediate complex 
region. At the point along the reaction coordinate 
where a = y, the energy expression in the symmetry 
conserved case reduces to 

Ela = y = (a ± 0)/(l ± S) (15) 

giving an energy lowering AE of 

AE\a = y = ±((3 - aS)/{l ± 5) (16) 

over the symmetry nonconserved case. 
The total electronic symmetry labels described in 

section II with respect to the Woodward-Hoffmann 
rules yield results that are identical with those just 
described. If total symmetry is not conserved, there is 
again no interaction between the two structures i^R and 
if/P. However, if total symmetry is conserved, then the 
individual electronic orbital symmetry labels give rise 
to a further distinction between the correlation of 
various reactant and product molecules. That is, the 
composition and value of /3 and S are governed by the 
individual electronic orbital symmetry properties of the 
reactant and product wave functions. To examine 
these effects, it is sufficient14 to consider the single 
determinant comprising a self-consistent-field molecular 
orbital approximation, the leading term in a configura­
tion interaction series, or the principal determinant in a 
natural orbital expansion.33 

No orthogonality is assumed between reactant and 
product molecular orbitals or between ^R and i/'p. 
However, since each of the reactant and product 
molecular orbitals has been constructed to be an eigen-
function of the particular point group that is present 
during the entire course of the reaction, symmetry can 
produce orthogonality between reactant and product 
molecular orbitals. Thus, in general, any one-electron 
molecular orbital, for instance, (pn'iq), the /th molecular 
orbital of the reactant structure describing the 9th elec­
tron, is nonorthogonal to any other molecular orbital, 
for instance, <pv3{q), the y'th molecular orbital of the 
product structure; however, if the symmetry species, 
T[^R*] and T[ipF'], of the two orbitals are not identical, 
then the two orbitals are orthogonal by symmetry. 
Moreover, an TV-electron determinant describing the 
reactants is nonorthogonal to an iV-electron determinant 
describing the products unless there does not exist a 
complete concordance of symmetry species between the 
component molecular orbitals of the two determinants. 
Therefore, the overlap integral, S of eq 13, vanishes 
unless all individual orbital symmetries are conserved. 
In addition to zero-particle operators, the matrix ele­
ments of one-particle operators in 3C also vanish for two 

determinants when all individual orbital symmetries are 
not conserved. The remaining terms included in /3 from 
3C are the two-electron repulsion terms and these in­
tegrals allow two orbitals of the reactant structure to 
have symmetry species different than two orbitals of the 
product structure, under the following conditions: (i) 
all other individual orbital symmetries of the two struc­
tures must be concordant and (ii) the discordant sym­
metry species must be such that their direct product 

r [ ^ ' ( 1 W[<pA 1 ) ] iW(2) ] r [pp '(2)] (17) 

has a totally symmetric component of the point group 
of the system. Where these conditions are met, aside 
from orbital overlaps, the interaction term /3, as written 
in eq 12, consists solely of two-electron exchange 
integral contributions and this is denoted by appending 
a subscript 2 on the symbol, /32. In this case, the energy 
expression of eq 9 reduces to 

E = 1Ma + 7) ± [1M" - 7)2 + ft2]'2 (18) 

and is depicted by the dotted curves for the hypothetical 
reaction illustrated in Figure 1. 

Recapitulating, where total or state symmetry is con­
served and individual orbital symmetry is not conserved 
but nevertheless the individual symmetries satisfy the 
conditions set forth with respect to eq 17 above, the 
reactant and product states do correlate and there is an 
energy lowering encountered along the reaction co­
ordinate as embodied in eq 18. Now consider again the 
point along the reaction path where a = y. The energy 
now reduces to 

AE\a = y = a ± ft (19) 

giving an energy lowering of 

AE\a = y = ± f r (20) 

A reaction having the symmetry characteristics just 
described is termed a "forbidden" process in the 
Woodward-Hoffmann regime. This terminology is 
discussed further, vide infra. 

The other important situation involving conservation 
of individual orbital symmetries gives rise to an "al­
lowed" process in the Woodward-Hoffmann vocabu­
lary. Here, in addition to total symmetry being con­
served, each of the individual orbital symmetries is also 
conserved from reactant to product structures. That is, 
each of the symmetry species T [^R ' ] of the reactant 
structure can be matched one-for-one with identical 
species found in the product structure, F[^p-1]. Now 
the corresponding iV-electron determinants are nonzero 
for zero-, one-, and two-particle operators, allowing 
both 5 and /3 to be nonzero, where f3 consists of contri­
butions from each term appearing in JC. The relevant 
energy expression is now eq 9 and is represented by the 
dashed curve in Figure 1. At the point where a = y, 
eq 15 and 16 are relevant and the greater energy lowering 
in this case, over the "forbidden" reaction described by 
eq 19 and 20, is seen to arise both from the full exchange 
interaction /3 and from overlap effects, S. 

A comparison of the Wigner-Witmer and Wood­
ward-Hoffmann rules can now be made via Figure 2. 
Where total orbital symmetry is not conserved, in­
dividual orbital symmetry is also not conserved and the 
two rules give the same answer: namely, that the re­
action is "unfeasible." In the case where total sym-
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IS ORBITAL SYMMETRY 
CONSERVED? 

TOTAL 

NO 

YES 

YES 

INDIVIDUAL 

NO 

NO 

YES 

WHAT IS REACTION FEASIBILITY? 

WIGNER-WITMER 
RULES 

UNFEASIBLE 

j - FEASIBLE 

WOODWARD-HOFFMANN 
RULES 

FORBIDDEN 

ALLOWED 

Figure 2. The hierarchy of electronic orbital symmetry conserva­
tion showing the effect of various categories of symmetry conserva­
tion on reaction feasibility. 

metry is conserved, the Woodward-Hoffmann rules 
make a further distinction on the basis of individual 
orbital symmetries, giving rise to a subtlety not con­
sidered by the Wigner-Witmer rules; namely, "feasible" 
reactions are further classified as "allowed" or "for­
bidden." Thus, on energy grounds, there exists a 
three-level hierarchy of symmetry control over chemical 
reactions. 

IV. Examples 

A. Reaction of CH with O2. The reaction of various 
electronic states of CH with ground state oxygen to 
yield ground state CO and excited state OH* 

CH + O2(X
3Zg-) —>• CO(X1S+) + OH*(A2S+) (21) 

has been discussed by Shuler6 in connection with hydro­
carbon flame reactions. The intermediate complex, 
CHO2, is assumed to be planar and to possess Cs sym­
metry. Resolution of the symmetry species of the 
products into the C5 point group gives the species A' 
for each molecule. The resulting * direct product 
A' X A ' yields A' for the possible symmetry species of 
the intermediate. Resolution of the reactant O2 sym­
metry species into Cs gives A " . Resolution of the 
ground or first excited state of CH, X2ir, or A2A into 
Cs yields both A ' and A " for each state. Combining 
these with the A " species of O2 gives a manifold of 
possible intermediate symmetry species of A' and A " . 
Thus, both of these states of CH when reacted with O2 

correlate with the product species indicated in eq 21 via 
an intermediate of species A'. The second excited 
state of CH, B 2 S - , resolves into an A " species of Cs and 
since its direct product with the O2 species gives A " X 
A " = A', this reaction also correlates with products 
in the same manner as above. Finally, the third 
excited state of CH, C2S+ , resolves into the A ' species 
of Cs and since the direct product of A' X A " gives A " , 
reaction of CH in this electronic state with O2 does not 
correlate with the products given in eq 21. 

In contrast to the Wigner-Witmer rules, the Wood­
ward-Hoffmann rules require the construction of 
molecular orbitals spanning the planar four nuclei 
system. The s and p atomic orbitals lying in the plane 
form a set of A ' molecular orbitals, while the p orbitals 
perpendicular to the plane form a set of A " orbitals. 
For the product conformation CO + OH*, the molecu­
lar orbitals, 1 Ap' to 9 Ap' and 1 Ap" , are each taken 
to be doubly occupied and the remaining three electrons 
are taken to be distributed as follows. 

CO + OH*(A2S+) . . . (2Ap")2(3Ai.")°(10Ar')1 (22) 

This gives nineteen A ' and four A " orbitals and total 
symmetry of A'. The orbitals being referred to here 
describe the product conformation with bonding char­
acteristics in CO and OH. For the reactant conforma­

tion, CH + O2, the corresponding molecular orbitals, 
I A R ' to 9AR ' and I A R " , are also each taken to be 
doubly occupied and the remaining three electrons are 
distributed as follows. 

CH(XV) + O2 . . . (2AR") I(3AK")1(10AR ' )1 (23) 

CH(A2A) + O2 . . . (2AR")2(3AR")"(10A„')1 (24) 

CH(B2S-) + O2 . . . (2AR")0(3AIi")2(lOAu')
1 (25) 

CH(C2S+) + O2 . . . (2AR") I(3A I (")°(10AK')2 (26) 

These orbitals differ from those describing the product 
structure in that these orbitals describe the reactant 
bonding arrangement of CH and O2. The ground and 
first two excited states then have nineteen A ' and four 
A " orbitals and total symmetry of A'. For these three 
reactions, both individual and total symmetry are 
therefore conserved as the reaction proceeds to prod-
ducts. With the third excited state, there are twenty A' 
and three A " orbitals giving total symmetry of A " and 
neither individual nor total symmetry is conserved. 

The Wigner-Witmer and Woodward-Hoffmann rules 
therefore give equivalent results for the reaction in eq 
21. In particular, the reactions involving the first three 
electronic states of CH are "feasible" processes, whereas 
the reaction involving the C 2S+ state of CH is "un­
feasible." 

B. Bimolecular Hydrogen-Deuterium Exchange. The 
chemical exchange reaction between ground state 
hydrogen and deuterium molecules to form the mixed 
isotope, diatomic HD 

H2(
1S6

+) + D2(
1S6

+) —> HD(1S+) + HD(1S-) (27) 

is easily subjected to the two symmetry rules. Assuming 
a planar complex for the geometry of the four-atom 
intermediate,6 the Sg+ symmetry of each reactant is 
resolved into A ' species of the C point group. The 
direct product of the resulting two A ' species is A' X 
A' = A' . The 2+ species of each product molecule is 
also resolved into the A ' representation of Cx. There­
fore, total symmetry is conserved through an A ' inter­
mediate state. With respect to the C, point group, the 
Woodward-Hoffmann rules give this same result, since 
the four electrons each occupy an orbital of A' sym­
metry in both reactant and product configurations and 
consequently total and individual orbital symmetries 
are conserved. Through Cs symmetry, the reaction is 
therefore both "feasible" and "allowed." 

However, from the Woodward-Hoffmann point of 
view, the symmetry of C, is too low to be useful in this 
case since no symmetry element of the group bisects a 
bond that is made or broken during the reaction.14 

Hence, higher symmetries are of more interest;44'45 for 
instance, a rectangle-square-rectangle geometrical ar­
rangement, where the nuclei are situated at the corners 
of a rectangle in the reactant stage, form a square 
intermediate and form a new rectangle in the product 
conformation, maintaining D2n symmetry throughout. 
For Wigner-Witmer rules, the 2B

+ and S+ species each 
resolve into A8 species of D1n and again total symmetry 
is conserved. For Woodward-Hoffmann rules, the 
four electrons in the reactant structure occupy two AK 

and two B3u molecular orbitals in the D21, group giving 
a total symmetry of AB. The product structure is 

(44) R. Hoffmann,/. Chem. Phvs., 49, 3739 (1968). 
(45) D. M. Silver, Chem. Phys. Lett.. 14,105 (1972). 
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comprised of two AR and two B2u orbitals corresponding 
to AK total symmetry. Again, in agreement with the 
Wigner-Witmer rules, total symmetry is conserved. 
However, the individual orbital symmetries are not 
conserved and, although the reaction can be considered 
"feasible" on total symmetry grounds, it is a "for­
bidden" reaction on individual symmetry grounds 
through the D-, h point group. This same result is found 
when a number of other higher symmetry groups are 
examined45 for this reaction. 

C. Butadiene-Cyclobutene Stereoisomerization. The 
classic example11 of an electrocyclic, ring-chain stereo­
isomerization is that of butadiene-cyclobutene depicted 
in Figure 3. Only the four p-type orbitals, situated one 
per carbon atom, need be considered in order to as­
certain whether the disrotatory or conrotatory process11 

is most likely to occur. 
With respect to a mirror plane of symmetry perpen­

dicular to the plane of the four carbon nuclei and 
bisecting the BC internuclear axis, the reactant 
butadiene molecule has two A' and two A " orbitals, 
giving a total symmetry of A'. All four occupied 
product cyclobutene molecular orbitals have the sym­
metry species A', giving rise to a total symmetry of A'. 
Here, total symmetry is conserved but individual sym­
metry is not conserved and the disrotatory reaction is 
termed "feasible" on the former grounds but "for­
bidden" on the latter grounds. 

With respect to a two-fold axis of symmetry lying in 
the plane of the four carbon nuclei and bisecting the 
BC axis, there are two A and two B occupied reactant 
butadiene orbitals, giving total symmetry of A. The 
symmetry species of the occupied product cyclobutene 
orbitals is also two A and two B, with total symmetry A. 
Therefore, both total and individual orbital symmetries 
can be conserved for this conrotatory process, making 
it both a "feasible" and "allowed" reaction. 

By considering only total orbital symmetries, Wigner-
Witmer-type rules would predict both the disrotatory 
and conrotatory modes of reaction to be equally feasible. 
Consideration of individual orbital symmetries allows 
the further distinction to be drawn regarding the relative 
feasibility of these two reaction paths. 

There is an important consequence of the fact that 
there are two distinct reaction paths involved in this 
example: namely, that along each path (conrotatory 
and disrotatory) there is a distinct set of reaction path 
dependent quantities, a, y, /3, and 5 of eq 10-13, 
respectively. This is particularly evident for S, since S 
vanishes along the disrotatory path but not along the 
conrotatory, and also for /3, which reduces to (S-, along 
the disrotatory but not along the conrotatory path. 
In addition, it is equally true that a (disrotatory) and y 
(disrotatory) differ from a (conrotatory) and y (conrota­
tory), respectively, along the two reaction paths. 
These latter sets of quantities differ from one another 
both because of symmetry-imposed differences in the 
electronic structures along the two paths and because 
the nuclear geometries should differ in general along 
the two different paths. Hence, it is not simply the 
energy lowerings of eq 16 for the symmetry conserved 
conrotatory process and of eq 20 for the symmetry 
nonconserved disrotatory process that alone can be com­
pared to one another to assess the relative favorability 
of one mode of reaction over the other. This is because 

DISROTATORY 
MIRROR 

BUTADIENE [ __ 8 X T i / ? ^ 3 4 

CONROTATORY A > K r K l 3 
2-FOLD AXIS I \ r 

1 ^ -

CYCLOBUTENE 

Figure 3. Two possible modes of ring closure are depicted for the 
butadiene-cyclobutene isomerization. The disrotatory and con­
rotatory reactions produce different stereoisomers as indicated by 
the substituent labels 1 to 4 on the product molecules. 

the two energy lowerings refer to two different reference 
energies, a (conrotatory) and a (disrotatory), located at 
different positions on the potential energy surface. 
However, the full energy expressions, of eq 9 for 
conrotatory and eq 18 for disrotatory, are valid over the 
entire course of the respective reaction paths. Proper 
quantitative comparisons of the two modes of reaction 
can therefore be made via eq 15 and 19, when the energy 
at the intermediate point along each path corresponds 
to the maximum barrier. 

V. Discussion 

The chemical reactions treated thus far all involve the 
rearrangement of various nuclei from reactant positions 
into product conformations. Although nuclear motions 
perform a central role in these chemical reactions, the 
concern throughout this work has not been with nuclear 
motion per se but rather with the internuclear potential 
that governs this nuclear motion. The possible occur­
rence of violations of the electronic orbital symmetry 
rules and the further influence on reaction feasibility 
due to the effect of nuclear motions are discussed in the 
present section. 

There is a distinction between "violation" of the 
electronic orbital symmetry rules and "nonapplicability" 
of these rules. The applicability of the rules extends 
over systems for which (a) effects due to the Born-
Oppenheimer approximation are negligible, (b) nuclear 
angular momenta, electronic spin angular momenta, and 
electronic orbital angular momenta are separately 
conserved, (c) electronic spin interactions and nuclear 
dynamic effects are negligible, and (d) elements of 
symmetry exist among the nuclear positions along the 
course of the reaction path. A proper formulation of 
the symmetry rules must include these conditions as 
prerequisites. It is important to realize that if these 
constraints are not obeyed with respect to a given 
system, then the electronic orbital symmetry rules can­
not strictly be applied to that system. These constraints 
therefore represent a limitation on the universality of 
the symmetry rules. Indeed, several examples of chemi­
cal systems have been citedina (although incorrectly 
designated to be violations, vide infra) for which one 
or another of these conditions do not hold and for 
which therefore the rules cannot logically be applied. 

It is with respect to the subset of chemical reactions, 
for which the conditions a-d hold true, that the total 
electronic energy (internuclear potential) can be evalu­
ated from appropriate electronic wave functions as in 
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Figure 4. The energy as a function of reaction coordinate for a hy­
pothetical reaction involving two alternative pathways. The elec­
tronic orbital symmetry properties of reactant, product A, and 
product B are assumed to be such that the reaction from reactant 
to product A is forbidden, while reaction to product B is unfeasible. 
Arrows indicate the magnitude of energy barriers for the two reac­
tion paths with respect to each of two initial nuclear states, v = O 
and v = A. 

section III and the effects of various electronic orbital 
symmetry situations can be assessed. Thus, it is under 
these conditions that the electronic orbital symmetry 
rules predict the relative heights of the electronic energy 
barriers along certain reaction paths: namely, along an 
allowed path, the barrier is predicted to be lower than 
the barrier along a forbidden path; and similarly, the 
barrier along a forbidden path is predicted to be lower 
than the barrier along an unfeasible path. A violation 
of these rules, with respect to a given chemical reaction, 
must consist of the observation that conditions a-d are 
satisfied and the predicted ordering of barrier heights is 
incorrectly specified by the rules. If a violation of 
these rules is to be found, it must be sought among 
those chemical systems for which the rules can properly 
be applied: i.e., the above prerequisite constraints 
must be satisfied. In this sense, there has not yet been 
a demonstration of a true violation of the rules. 

It should be noted, however, that the symmetry rules 
have had an enormous impact precisely in cases where 
condition d, regarding symmetry among nuclear posi­
tions, is not strictly satisfied, e.g., the butadiene-
cyclobutene isomerization where the presence of various 
nonequivalent substituents, numbered 1-4 in Figure 3, 
violates condition "d" in a strict sense, but nevertheless, 
these same substituents provide both the motivation for 
the rules and the means for distinguishing between the 
conrotatory and disrotatory modes of reaction. In such 
cases, the substituent groups are considered to be 
peripheral to the reaction zone and hence, as an ap­
proximation, the effects of these peripheral groups on 
the reaction process are considered to be negligible. 
To a large extent, this approximation is found14 to be 
valid; however, it is certainly conceivable that there 
might be molecular situations where this approximation 
may not be valid. In particular, the presence of a cer­
tain peripheral substituent might lead to steric hindrance 
in a product conformation or hindered rotation along 
a certain reaction path. This could lead to an in­
accessibly high product state energy, y, or an unusually 
high barrier along the reaction path, causing an other­
wise "allowed" reaction to be rendered unfavorable. 
The energy considerations of section III take account of 
such effects by consistently employing total wave func­
tions which, in principle, contain all such pertinent 
information about the reaction system. Thus, although 
such effects may not necessarily be evident in a simple 
qualitative application of the symmetry rules, quantita­
tive predictions based on calculations using the energy 

expressions of section III should always agree with the 
corresponding experimental observations. 

Further consideration of condition "a" is warranted 
since, even within the confines of the Born-Oppenheimer 
approximation, the effects of nuclear motions can alter 
the character of a chemical reaction.9'2:i'46-48 Such con­
siderations can be appreciated by reference to Figure 4. 
Consider the reactant species to be in a certain nuclear 
state (e.g., nuclear vibrational state, v = O). The 
characteristics of the internuclear potential along the 
two alternative reaction coordinates are determined by 
the electronic orbital symmetry properties of the re­
actant species and the product A and product B species. 
The material in section III of the present work provides 
expressions for the energy as a function of reaction 
coordinate, including the maximum barrier position, 
for the various symmetry situations. In the example 
given in Figure 4, the "forbidden" path has the lower 
energy barrier and thus from strictly static, electronic 
considerations, the "forbidden" path toward product A 
is predicted to be the more feasible of the two alterna­
tives. Now consider the effect of the initial nuclear 
state on the reaction feasibility. Reaction from the 
lowest nuclear state (i.e., v = 0) should be less feasible 
than reaction from a higher nuclear state (e.g., v = 4), 
since the effective energy barriers with respect to these 
two states are considerably different. Moreover, re­
action along the "forbidden" path might be entirely 
inaccessible due to the magnitude of the barrier with 
respect to the lower nuclear state but easily accessible 
from the higher nuclear state. In the absence of the 
forbidden path, even the "unfeasible" reaction mode to 
product B could possibly become accessible if enough 
energy were present in appropriate modes of nuclear 
motion including vibration, rotation, and translation. 
These and other effects arising from nuclear motion 
itself as well as temperature and pressure effects need 
to be assessed from appropriate dynamical and statisti­
cal considerations. That such strictly dynamic, nuclear 
considerations are important to an absolute determina­
tion of reaction feasibility does not, however, negate 
the importance and usefulness of the underlying elec­
tronic aspects that provide the overall character of the 
internuclear potential. That is to say, within the con­
fines and constraints under which the electronic orbital 
symmetry rules are properly defined, these rules can be 
expected to play a dominant and legitimate role in the 
elucidation of chemical reaction phenomena. 

VI. Conclusions 

Group theory and symmetry are extremely useful 
tools in many areas of molecular quantum mechanics. 
In the present context, symmetry is used for the evalua­
tion of matrix elements between wave functions repre­
senting reactant and product structures along the course 
of a reaction coordinate. In particular, the total orbital 
symmetry of an iV-electron wave function and the N 
individual electronic orbital symmetries of the N 
electrons comprising the system are used to separate 
symmetry rules into a hierarchy of three levels, in­
dicated in Figure 2. Quantitative energy relations be­
tween these various categories of reaction feasibility can 
be obtained from eq 9, where electron spin interactions, 

(46) R. F. W. Bader, Can. J. Chem., 40,1164 (1962). 
(47) L.Salem, Chem.Phys.Lett., 3, 99 (1969). 
(48) L. Salem and J. S. Wright, J. Amer. Chem. Soc, 91, 5947 (1969). 
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coupling of electronic and nuclear motions, and other 
nuclear dynamic effects can be assumed to be negligible. 
It should be emphasized that the same fundamental 
basis governs the operation of both sets of symmetry 
rules and in this respect the two sets of rules are funda­
mentally similar. 

The examples, given in section IV, show that Wigner-
Witmer and Woodward-Hoffmann rules give equiva­
lent results to the extent that total orbital symmetry can 
be useful but that the Woodward-Hoffmann rules can 
often provide a further distinction between possible re­
action paths by considering individual orbital sym­
metries as well. The examples include cases where 
total symmetry is sufficient to analyze a reaction and 

The chemistry of silylene and its derivatives has been 
the subject of several recent review articles.3-6 

Ever since dimethylsilylene was formed by the reduction 
of dimethyldichlorosilane and trapped through the 
Si-H insertion process in the pioneering work of Skell 
and Goldstein,6 numerous investigations on reactions 
of various substituted silylenes have been performed.3-5 

One such investigation which pertains to our study is 
the addition of dimethylsilylene to 2,3-dimethyl-l,3-
butadiene.7 

H3C CH3 H3C CH3 

Si(CH3), + V - / —* V = / (1) 

H3C "CH3 

It was further established that conjugated dienes were 
more reactive toward dimethylsilylene than molecules 
with only one double bond.4 While studies such as 
these have provided a considerable amount of informa­
tion about substituted silylenes, the knowledge about 
unsubstituted silylene, SiH2, itself is rather limited. 

Silylene has been successfully produced by two dif­
ferent methods: (i) the nuclear recoil technique which 

(1) Preliminary information concerning this work was reported in, 
G. P. Gennaro, Y.-Y. Su, O. F. Zeck, S. H. Daniel, and Y.-N. Tang, 
J. Chem. Soc, Chem. Commun., 637(1973). 

(2) Address correspondence to this author. 
(3) I. M. T. Davidson, Quart. Rev., Chem. Soc, 25, 111 (1971). 
(4) W. H. Atwell and D. R. Weyenberg, Angew. Chem., Int. Ed. Engl., 

8,469(1969). 
(5) P. P. Gaspar and B. J. Herold in "Carbene Chemistry," 2nd ed, 

W. Kirmse, Ed., Academic Press, New York, N. Y., 1971. 
(6) P. S. Skell and E. J. Goldstein, J. Amer. Chem. Soc, 86, 1442 

(1964). 
(7) W. H. Atwell and D. R. Weyenberg, / . Amer. Chem. Soc, 90, 

3438(1968). 

also cases where an examination of individual sym­
metries is required. 

The hierarchy of symmetry control rests on the 
occurrence of energy barriers of different heights being 
encountered, along various reaction coordinates, corre­
sponding to the degree of concordance or discordance 
of symmetry species from reactant to product wave 
function structures. The possible experimental ob­
servation of "forbidden" processes2329-33 presages the 
need to emphasize that these different barrier heights 
do not control the reaction destiny in an absolute 
sense but only affect the various probabilities of reaction 
along different paths. However, for many purposes,14 

this degree of reaction control is quite important. 

was developed by Gaspar and coworkers,8-12 and (ii) 
the decomposition studies stemming from the pyrolysis 
and photolysis of compounds such as SiH3 and 
Si2H6.13-17 

Si2H6 — > SiH2 + SiH4 (2) 

The only well-established silylene reaction to date is the 
insertion of SiH2 into Si-H bonds.8 9 1 1 - 1 0 

SiH2 + SiH1 — > • Si2H6 (3) 

The possible insertion of silylene into other types of 
bonds such as Si-Si bonds has also been suggested.1115 

On the other hand, it has been demonstrated that 
SiH2 is inert toward C-H, C-C, and Si-C bonds.3-5 

The predicted products from the silylene addition to 
olefins are substituted silacyclopropanes which have 
never been detected experimentally.9'18 Their absence 
can be explained by the instability of such highly 

(8) P. P. Gaspar, B. D. Pate, and W. C. Eckelman, J. Amer. Chem. 
Soc, 88, 3878 (1966). 

(9) P. P. Gaspar, S. A. Bock, and W. C. Eckelman, J. Amer. Chem. 
Soc, 90, 6914 (1968). 

(10) P. P. Gaspar, S. A. Bock, and C. A. Levy, Chem. Commun., 1317 
(1968). 

(11) P. P. Gaspar and P. Markusch, Chem. Commun., 1331(1970). 
(12) P. P. Gaspar, P. Markusch, J. D. Holten III, and J. J. Frost, 

/ . Phys. Chem., 76,1352 (1972). 
(13) M. A. Nay, G. N. C. Woodall, O. P. Strausz, and H. E. Gun­

ning, J. Amer. Chem. Soc, 87,179 (1965). 
(14) J. H. Purnell and R. Walsh, Proc Roy. Soc, Ser. A, 293, 543 

(1966). 
(15) M. Bowrey and J. H. Purnell, / . Amer. Chem. Soc, 92, 2594 

(1970). 
(16) P. Estacio, M. D. Sefcik, E. K. Chan, and M. A. Ring, lnorg. 

Chem., 9,1068(1970). 
(17) I. DuBois, G. Herzberg, and R. D. Verma, / . Chem. Phvs., 47, 

4262(1967). 
(18) P. S. Skell and E. J. Goldstein, J. Amer. Chem. Soc, 86, 1442 

(1964), 
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Abstract: Silylene-31S/ adds to 1,3-butadiene to give silacyclopent-3-ene-3IS/. Studies using nitric oxide as a 
scavenger demonstrate that the reacting silylene is present as 80% triplet and 20% singlet, while studies using neon 
as a moderator prove that the ground electronic state of silylene is a singlet. 
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